Cancerous brain tumor cells may be at ‘critical point’ between order and disorder

Large-scale coordination of brain tumor behavior may allow tumor cells to resist better against therapies such as chemotherapy and radiation, researchers say

2:00 PM

Author | Noah Fromson

cancer cell
Justine Ross, Jacob Dwyer, Michigan Medicine

Glioblastoma is the most aggressive form of brain cancer. Despite decades of major efforts and clinical trials, the tumor’s survival rate has remained stagnant.

For years, scientists understood the cells in these tumors as static and relatively fixed. But recent studies have uncovered that glioblastomas contain active cells moving in complex patterns known as “oncostreams”, which determine how aggressively the tumors grow.

Research led by Michigan Medicine and the University of Michigan, published in Science Advances, suggests that glioblastoma cells are poised near a “critical point” of order and disorder — meaning, the cells possess some form of large-scale coordination throughout the whole tumor that allows them to respond in practical unison to attempts to kill tumor cells, such as chemotherapy or radiation.

SEE ALSO: Dynamic cells linked to brain tumor growth and recurrence (michiganmedicine.org)

“Many people imagine that tumors are made up of different, unconnected cells that invade the normal brain, but we are seeing patterns of organization that show the tumor working almost like a single entity,” said senior author Pedro Lowenstein, M.D., Ph.D., Richard C. Schneider Collegiate Professor of Neurosurgery at U-M Medical School and member of the U-M Health Rogel Cancer Center.

“This large-scale coordination of brain tumor behavior may allow tumor cells to resist better against therapies, such as chemotherapy and radiotherapy. Disrupting the large-scale organization of brain tumors may result in more powerful ways to treat and one day eliminate brain tumors.”

The research team used time-resolved tracking of individual glioblastoma cells and investigated their movement by implanting genetically engineered NPA-green, fluorescent cells into the brains of mice.

Results of the study of the movement of glioma cells initially suggested that the cells may be moving independently.

But through examining cell populations of different sizes, researchers found correlated fluctuations across distances many times the size of a single cell, to close to the size of the whole tumor preparation for imaging tumor movement under a microscope.

“Our results indicate that beneath a weakly ordered façade, brain tumor assemblies actually have some form of collective behavior on scales of millimeters or more,” said first author Kevin Wood, Ph.D., an associate professor in the Departments of Physics and Biophysics at U-M.

“The work demonstrates that collaboration between biologists and biophycisists working at the frontiers of neuro-oncology and physics can provide new avenues for understanding and potentially treating so far incurable cancers.”

Researchers say more research is needed before any clinical implications are determined.

Additional authors include Andrea Comba, Ph.D., of University of Michigan, Sebastien Motsch, Arizona State University Ph.D., and Tomás S. Grigera, Ph.D., of The University of La Plata, Argentina.

This work was supported by the NIH/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grants R01-NS105556, R01-NS122536, R01-NS124167, and R21-NS123879-01; NIH/NINDS grants R01NS122234, RO1NS127378, and NIH/NCI R01-CA243916 to P.R.L.; Rogel Cancer Center, the Department of Neurosurgery; the Pediatric Brain Tumor Foundation, Leah’s Happy Hearts Foundation (G013908), Ian’s Friends Foundation (IFF) (G024230), Chad Tough Foundation (G023419), and Smiles for Sophie Forever Foundation to P.R.L.; NIH R35GM124875 to K.W.; Health and Human Services, NIH, UL1 TR002240 to Michigan Institute for Clinical and Health Research (MICHR), Postdoctoral Translational Scholars Program (PTSP), Project F049768 to A.C.; and the NSF DMS-2206330 to S.M.

Paper cited: “Scale-free correlations and potential criticality in weakly ordered populations of brain cancer cells,” Scientific Advances. DOI: 10.1126/sciadv.adf7170


More Articles About: Cancer: Cancer Types Brain Cancer Cancer Research Cancer Surgery Tumors and Lumps Neurosurgery & Neurological Procedures Neurological Disorders Neurological (Brain) Conditions
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories PURPLE BLUE RED CELLS FLOATING
Health Lab
Using cellular therapy to treat cancer, and beyond
Here, Monalisa Ghosh, M.D., a hematologist-oncologist at the University of Michigan Health Rogel Cancer Center, answers questions about cellular therapy; how it's used and what exciting developments are soon to come.
patient looking at paper with provider in scrubs blue in clinic
Health Lab
How race impacts patients’ response to cancer immunotherapy
The first large scale analysis finds immune checkpoint inhibitors are equally effective in Black and white patients, with Black patients having fewer side effects.
bone close up of cells inside green bbble with cells inside in yellow brown pink and red orange background
Health Lab
How breast cancer cells survive in bone marrow after remission
A new study from researchers at the University of Michigan and the University of California San Diego has shed light on a previously poorly understood aspect of breast cancer recurrence: how cancer cells survive in bone marrow despite targeted therapies.
couple holding old photo of themselves in black and white in same position
Health Lab
Treating a brain aneurysm with the market’s tiniest flow diverter
Treating a brain aneurysm with the market's tiniest flow diverter
young adult male hugging blonde haired dog
Health Lab
Cutting edge brain neurostimulator device significantly reduces 21-year-old’s seizures
A 21-year-old patient benefits from a novel application of responsive neurostimulation, also known asRNS, surgery to reduce seizures from drug-resistant epilepsy.
Microscope
Health Lab
Nerve damage reduced in prediabetic mice with diet, exercise
A low calorie diet and high intensity exercise can reduce nerve damage in prediabetic mice, according to a Michigan Medicine study.