DIPG Tumor Patterns Offer New Insight on Survival

An analysis of several hundred DIPG and related tumors, including Chad Carr’s, finds an overlooked key factor in determining prognosis for the aggressive childhood brain cancer.

7:00 AM

Author | Beata Mostafavi

The prognosis for all children diagnosed with an aggressive brain tumor known as diffuse intrinsic pontine glioma (DIPG) and similar tumors has been mostly the same: dismal.

MORE FROM THE LAB: Subscribe to our weekly newsletter

But a small subset of patients with these tumors that bear mutations in a gene in the basic packaging of DNA (known as histone mutations) may have better outcomes than others, suggests new research from Michigan Medicine's Pediatric Brain Tumor Research Initiative.

Researchers mined data from more than 500 published cases of tumors with these histone mutations across the globe between 2012 to 2017 — including Chad Carr's tumor. Chad, the grandson of former University of Michigan football coach Lloyd Carr, died at age 5 in 2015 after being diagnosed with DIPG 14 months earlier.

In their review, researchers found a crucial factor that could influence outcomes: whether tumors with this histone mutation had invaded the surrounding brain.

Tumors from 21 patients stood out because the tumors had not invaded into the surrounding brain tissue. These patients, compared to those with more invasive tumors, had approximately four to five times longer survival rates, according to research published in the journal Acta Neuropathologica.

"These findings show that the extent of invasion into the surrounding brain tissue is really important in determining prognosis in DIPGs and similar tumors with histone mutations," says Sriram Venneti, M.D., Ph.D., a Michigan Medicine pathologist and the study's senior author.

"Current guidelines lump all tumors with this type of histone mutation into the same category when it comes to prognosis," Venneti says. "But our study suggests that we may need to consider how the tumor invades into surrounding regions of the brain. While the majority of these patients have invasive tumors, we found that those who don't, even though a small group of patients, have a better prognosis. This information could be meaningful to their individual treatment and outcomes."

'Significant' progress

The research is among a series of studies expected to be published through the year that use sequencing data from pediatric brain tumors. Chad Carr's family, along with others treated at U-M's C.S. Mott Children's Hospital, donated tumor tissue to DIPG research at Michigan.

SEE ALSO: DIPG Disruptors: 6 New Brain Tumor Research Efforts Underway

"Chad's tumor, along with other DIPGs, is helping us better understand how the tumor behaves and grows and why it is so resistant against treatment," Venneti says.

The study, a collaboration among Mott, U-M's pathology department, the Michigan Comprehensive Cancer Center and the Mayo Clinic, comes on the heels of a recent paper specifically focused on Chad's tumor uncovering genetic clues.

Because DIPG and tumors that bear this type of mutation are so rare and difficult to biopsy, clinical guidelines are based on relatively small patient cohorts, Venneti says. That's what makes the size and scope of the latest study so impactful.

"We've never seen a statistical significance between invasive and noninvasive tumors that bear this type of histone mutation because the patient sample size was so small," Venneti says. "By pooling together such a large number of global cases, we were able to uncover a significant but often overlooked factor. This study gives us statistical power to help answer the question of whether certain tumors should in fact be classified and treated differently.

"It is still far too early to know how this finding may guide therapy, but it is valuable for this group of patients," he adds. "With such a rare type of tumor, research on every single one helps us get closer to finding a way to fight it."


More Articles About: Lab Report Cancer Research Brain Cancer CS Mott Children's Hospital Cancer: Help, Diagnosis & Treatment
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Multicolored rainbow brain cross section on black background
Health Lab
New clues toward treating pediatric brain tumors harboring epigenetic mutation
Inhibition of STAT3 signaling may improve survival in those with H3.3G34R/V mutant gliomas, animal studies suggest.
 Metformin Molecular Model
Health Lab
Common diabetes drug promising against rare childhood brain tumor in laboratory studies
What if a common diabetes medication could help fight a rare type of childhood brain cancer? Recent lab studies reveal metformin shows promising results in suppressing specific tumor types.
Daniel Wahl and researcher looking and pointing at slide
Health Lab
Study Suggests New Potential Approach Against Fatal Childhood Brain Cancer
In mouse models of DIPG, simultaneously attacking two metabolic pathways led to significant improvements in survival.
surgeon close up operating in bright lighted room
Health Lab
In 10 seconds, AI model detects cancerous brain tumor often missed during surgery
Researchers have developed an AI powered model that — in 10 seconds — can determine during surgery if any part of a cancerous brain tumor that could be removed remains, a study published in Nature suggests.
close up of orange and purple squiggle-looking cells merging and a little green in the middle
Health Lab
Researchers find metabolic mechanism that blocks immune response, immunotherapy in cancer
New research has discovered why some cancers don’t respond to immunotherapy treatment: A metabolite transporter within the tumor microenvironment blocks a key type of tumor cell death integral to immune response.
doctors talking to eachother down a hallway
Health Lab
A collaborative approach to pancreatic cancer
The Rogel and Blondy Center for Pancreatic Cancer is a center of excellence in pancreatic cancer research, combining pioneering research with innovative clinical care and an array of clinical trials. Center co-director Marina Pasca di Magliano explains that the key to a robust research program and responsive care lies in collaboration.