Biopsy Alternative: ‘Wearable’ Device Captures Cancer Cells From Blood

By capturing more cancer cells than blood draw screening, this device could help doctors understand a tumor’s biology and make decisions about treatment.

1:06 PM

Author | Kate McAlpine

Doctor looking at sample
Sunitha Nagrath, Ph.D., associate professor of chemical engineering at U-M, led the development of the device.

A prototype wearable device, tested in animal models, can continuously collect live cancer cells directly from a patient's blood.

Developed by a team of engineers and doctors at the University of Michigan, it could help doctors diagnose and treat cancer more effectively.

"Nobody wants to have a biopsy. If we could get enough cancer cells from the blood, we could use them to learn about the tumor biology and direct care for the patients. That's the excitement of why we're doing this," says Daniel F. Hayes, M.D., the Stuart B. Padnos Professor of Breast Cancer Research at the University of Michigan Rogel Cancer Center and senior author on the paper in Nature Communications.

Tumors can release more than 1,000 cancer cells into the bloodstream in a single minute. Current methods of capturing cancer cells from blood rely on samples from the patient—usually no more than a tablespoon taken in a single draw. Some blood draws come back with no cancer cells, even in patients with advanced cancer, and a typical sample contains no more than 10 cancer cells.

This is the epitome of precision medicine, which is so exciting in the field of oncology right now.
Daniel F. Hayes, M.D.

Over a couple of hours in the hospital, the new device could continuously capture cancer cells directly from the vein, screening much larger volumes of a patient's blood. In animal tests, the cell-grabbing chip in the wearable device trapped 3.5 times as many cancer cells per milliliter of blood compared to the traditional blood draw samples.

"It's the difference between having a security camera that takes a snapshot of a door every five minutes or takes a video. If an intruder enters between the snapshots, you wouldn't know about it," says Sunitha Nagrath, Ph.D., associate professor of chemical engineering at U-M, who led the development of the device. Nagrath is part of the Rogel Cancer Center and the Biointerfaces Institute at U-M.

Research shows that most cancer cells can't survive in the bloodstream, but those that do are more likely to start a new tumor. Typically, it is these satellite tumors, called metastases, that are deadly, rather than the original tumor. This means cancer cells captured from blood could provide better information for planning treatments than those from a conventional biopsy.

The team tested the device in dogs at the Colorado State University's Flint Animal Cancer Center in collaboration with Douglas Thamm, V.M.D., a professor of veterinary oncology and director of clinical research there. They injected healthy adult animals with human cancer cells, which are eliminated by the dogs' immune systems over the course of a few hours with no lasting effects.

For the first two hours post-injection, the dogs were given a mild sedative and connected to the device, which screened between 1-2 percent of their blood. At the same time, the dogs had blood drawn every 20 minutes, and the cancer cells in these samples were collected by a chip of the same design.

The device shrinks a machine that is typically the size of an oven down to something that could be worn on the wrist and connected to a vein in the arm. For help with the design, the engineering team turned to Laura Cooling, M.D., a professor of clinical pathology at U-M and associate director of the blood bank, where she manages the full-size systems.

The green circuit board inside the device controls the blood pump, heparin injector and display data. ( Illustration: Tae Hyun Kim)

"The most challenging parts were integrating all of the components into a single device and then ensuring that the blood would not clot, that the cells would not clog up the chip, and that the entire device is completely sterile," says Tae Hyun Kim, Ph.D., who earned his doctorate in electrical engineering in the Nagrath Lab and is now a postdoctoral scholar at the California Institute of Technology.

They developed protocols for mixing the blood with heparin, a drug that prevents clotting, and sterilization methods that killed bacteria without harming the cell-targeting immune markers, or antibodies, on the chip. Kim also packaged some of the smallest medical-grade pumps in a 3D-printed box with the electronics and the cancer-cell-capturing chip.

The chip itself is a new twist on one of the highest-capture-rate devices from Nagrath's lab. It uses the nanomaterial graphene oxide to create dense forests of antibody-tipped molecular chains, enabling it to trap more than 80 percent of the cancer cells in whole blood that flows across it. The chip can also be used to grow the captured cancer cells, producing larger samples for further analysis.

In the next steps for the device, the team hopes to increase the blood processing rate. Then, led by Thamm, they will use the optimized system to capture cancer cells from pet dogs that come to the cancer center as patients. Chips targeting proteins on the surfaces of canine breast cancer cells are under development in the Nagrath lab now.

Hayes estimates the device could begin human trials in three to five years. It would be used to help to optimize treatments for human cancers by enabling doctors to see if the cancer cells are making the molecules that serve as targets for many newer cancer drugs.

"This is the epitome of precision medicine, which is so exciting in the field of oncology right now," Hayes says.

 


More Articles About: Health Tech Cancer Research Cancer: Help, Diagnosis & Treatment
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Wire plugs device disc square yellow
Health Lab
Ultrasound technology helps destroy liver tumors in rats
Ultrasound technology has been repurposed as a technique to treat liver tumors in rats.
Color wires Microsopic Tissue Ultrasonic waves
Health Lab
Ultrasound Technology Developed at U-M Now in Clinical Trials for Liver Cancer
Trial will evaluate the safety and efficacy of histotripsy against liver tumors at eight U.S. sites
Website display of brain scans
Health Lab
U-M Approach Could Improve the Accuracy of Cancer Clinical Trials
An innovative way of assessing clinical trial-related imaging could reduce the kinds of errors that can distort results, study finds.
Doctor Office
Health Lab
Study: Many Thyroid Cancer Patients Say They Had No Choice About Radioactive Iodine
Better shared decision-making could help patients feel more empowered, avoid treatment side-effects and reduce overtreatment.
Doctors looking at sample
Health Lab
Making the Invisible Visible: New Method Opens Unexplored Realms for Liquid Biopsies
A new approach to RNA sequencing reveals thousands of previously inaccessible RNA fragments in blood plasma that might serve as disease- and organ-specific biomarkers.
Doctor looking at screen
Health Lab
To Predict Which Cancer Cells Will Attack the Brain, Scientists Harness the Power of Artificial Intelligence
A new precision medicine approach developed at the University of Michigan aims to predict cancer’s likelihood of migrating to the brain, and to aid in the search for new treatments