Circadian rhythm drives the release of important immune cells

Research reveals it's driven by Earth’s 24-hour day/night cycle

3:36 PM

Author | Kelly Malcom

woman laying on floating cell maroon
Jacob Dwyer, Michigan Medicine

The sites where our bodies come into contact with the outside world—via skin, the surface of the eye, inside the mouth, the lining of the intestine and the urinary tract, for example—are known as barrier tissues. 

Helping to defend those tissues are innate lymphoid cells, or ILCs, which when faced with a threat, stimulate proteins called cytokines that further activate the immune system and control intestinal microbiome. 

These cells naturally diminish with aging or can be depleted by certain medical conditions. 

ILCs are made inside bone marrow and circulate in the blood. But how are they activated to mobilize and travel to their target sites to replenish the depleted pool of tissue ILCs? 

A Michigan Medicine study reveals that this migration is ruled by circadian rhythms and are one of the many biological functions dictated by the Earth’s 24-hour day/night cycle. 

To determine this, the team, led by Chang H. Kim, Ph.D., professor of Pathology and the Kenneth and Judy Betz Research Professor, Mary H. Weiser Food Allergy Center, looked at how the process plays out in mice, who are active at night and sleep during the day.  

For both mice and humans, a stress hormone called cortisol peaks upon awakening, while a decrease in cortisol and an increase in melatonin and adenosine bring on feelings of sleepiness. 

The investigators discovered that ILCPs (progenitor cells that go on to become ILCs), heavily express so-called clock genes that lead to them being active at different times of the day.  

Specifically, they found that cortisol increases activation of a chemoattractant receptor called CXCR4 on ILCPs to keep them inside the bone marrow. 

At the time of rest, the cytokine interleukin-18 and a receptor called RORα activate the receptor S1PR1 on ILCPs, triggering them to be released from the bone marrow into the blood. 

“Building cells takes time. Instead of constantly releasing cells as they are made, we think that to maximize efficiency, the body synchronizes to a rhythm where you build up ILCPs for 12 hours while animals are active and then release them while sleeping,” said Kim.  

This process is repeated daily and is necessary to maintain adequate levels of barrier tissue ILCs in the gut.  

“What this suggests is if you mess up your circadian rhythm, you decrease ILCs in the tissue, making you more vulnerable to infection and an imbalance in your microbiome,” Kim said. 

Understanding how ILCs are mobilized on a circadian rhythm is an important concept that could be applied to other types of stem cells and eventually applied for certain cell therapies, he notes. 

Additional authors include Qingyang Liu, Shams Tabrez, and Patrick Niekamp 

This work was made possible in part through use of the U-M Advanced Genomics Core.

Paper cited: “Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow,” Cell Reports. DOI: https://doi.org/10.1016/j.celrep.2024.114200. 

 

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation. 

Sign up for the Health Lab Podcast: Add us on Spotify, Apple Podcasts or wherever you get you listen to your favorite shows. 


More Articles About: Allergy and Immunology Pathology All Research Topics Wellness & Prevention Basic Science and Laboratory Research
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories emergency sign wording in red on brick building
Health Lab
Refining tools that spot risk of violence in young adults in urban ERs may save lives
Half of young adult patients treated in emergency departments in three urban hospitals across the country reported experiencing violence either as a victim or aggressor, including firearm violence, in the six months prior to seeking treatment, according to a University of Michigan study.
see through blue person with red lines running through neck to chest
Health Lab
What is phrenic neuropathy?
Phrenic neuropathy is a condition that impacts the nerve around the diaphragm making it harder to breathe, especially in situations such as lying down or being in water. The condition is treatable, with surgical intervention, physical therapy or by letting it heal over time.
Microscope
Health Lab
Nerve damage reduced in prediabetic mice with diet, exercise
A low calorie diet and high intensity exercise can reduce nerve damage in prediabetic mice, according to a Michigan Medicine study.
frozen dial with ice on it with red dial
Health Lab
Enzyme identified as new therapeutic target for “cold” tumors
A study identifies an enzyme as a new therapeutic target for “cold” tumors.
three friends standing outside rogel cancer center building with big white ribbons
Health Lab
A lung cancer survivor shaping lung cancer advocacy
One woman's unexpected lung cancer diagnosis leads her to help many who aren't aware they're at risk of the disease.
On left, a young boy in a wheelchair has his doctor standing to his left and his parent is standing to his right in a show of support. On the right side of the image, the boy is now an adult and is wondering about the cost of his care and if his questions will be answered.
Health Lab
Changing the definition of cerebral palsy
Cerebral palsy is defined as a childhood disorder, which fails to recognize adults living with the condition and the lack of care they receive once they age out of pediatric clinics.