Dietary change starves cancer cells, overcoming treatment resistance

Laboratory research finds a low protein diet can enhance standard treatment for colon cancer

12:00 PM

Author | Nicole Fawcett

Blue green cell microscopic amino
Green staining shows mTORC1 is significantly increased due to disruption in GATOR1 in a mouse model of colon cancer. Credit: Sumeet Solanki, Ph.D.

A dietary change could be a key to enhancing colon cancer treatment, a study from the University of Michigan Rogel Cancer Center finds.

Cancer cells need nutrients to survive and grow. One of the most important nutrient sensing molecules in a cell is called mTORC1. Often called a master regulator of cell growth, it allows cells to sense different nutrients and thereby grow and proliferate. When nutrients are limited, cells dial down nutrient sensing cascade and turn off mTORC1.

While mTORC1 is known to be hyperactive in colon cancer, the key question is whether colon tumors hijack nutrient sensing pathways to fire up the master regulator.

MORE FROM THE LAB: Subscribe to our weekly newsletter

"In colon cancer, when you decrease the nutrients available in the tumors, the cells don't know what to do. Without the nutrients to grow, they undergo a kind of crisis, which leads to massive cell death," said senior author Yatrik M. Shah, Ph.D., Horace W. Davenport Collegiate Professor of Physiology at Michigan Medicine.

Researchers found in cells and in mice that a low-protein diet blocked the nutrient signaling pathway that fires up a master regulator of cancer growth. Results are published in Gastroenterology.

The regulator, mTORC1, controls how cells use nutritional signals to grow and multiply. It's highly active in cancers with certain mutations and is known to cause cancer to become resistant to standard treatments. A low-protein diet, and specifically a reduction in two key amino acids, changed the nutritional signals through a complex called GATOR.

GATOR1 and GATOR2 work together to keep mTORC1 in business. When a cell has plenty of nutrients, GATOR2 activates mTORC1. When nutrients are low, GATOR1 deactivates mTORC1. Limiting certain amino acids blocks this nutrient signaling.

Previous efforts to block mTORC have focused on inhibiting its cancer-causing signals. But these inhibitors cause significant side effects – and when patients stop taking it, the cancer comes back. The study suggests that blocking the nutrient pathway by limiting amino acids through a low-protein diet offers an alternative way to shut down mTORC.

"We knew that nutrients were important in mTORC regulation but we didn't know how they directly signal to mTORC. We discovered the nutrient signaling pathway is just as important to regulate mTORC as the oncogenic signaling pathway," said study first author Sumeet Solanki, Ph.D., a research investigator at the Rogel Cancer Center.

Researchers confirmed their findings in cells and mice, where they saw that limiting amino acids stopped the cancer from growing and led to increased cell death. They also looked at tissue biopsies from patients with colon cancer, which confirmed high markers of mTORC correlated with more resistance to chemotherapy and worse outcomes. Solanki said this could provide an opportunity to direct treatment for patients with this marker.

Like Podcasts? Add the Michigan Medicine News Break on Spotify, Apple Podcasts or anywhere you listen to podcasts.

"A low-protein diet won't be standalone treatment. It has to be combined with something else, such as chemotherapy," Solanki said.

The risk with a low-protein diet is that people with cancer often experience muscle weakness and weight loss, which limiting protein could exasperate.

"Putting cancer patients on a protein-deficient diet long-term is not ideal. But if you can find key windows – like at the start of chemotherapy or radiation – when patients could go on a low protein diet for a week or two, we could potentially increase the efficacy of those treatments," Shah said.

Further research will refine this concept of a therapeutic window to limit amino acids. Researchers will also seek to understand how these pathways are creating resistance to treatment and whether an inhibitor could block the GATOR complexes.

Additional authors include Katherine Sanchez, Varun Ponnusamy, Vasudha Kota, Hannah N. Bell, Chun-Seok Cho, Allison H. Kowalsky, Michael Green, Jun Hee Lee

Funding and disclosures: National Institutes of Health grants R01CA148828, R01CA245546, R01DK0925201, P30CA046592, P50CA130810, DK034933, F30CA257292-01A1; Department of Defense grant CA171086, Crohn's and Colitis Foundation, American Heart Association

Paper cited: "Dysregulated amino acid sensing drives colorectal cancer growth and metabolic reprogramming leading to chemoresistance," GastroenterologyDOI: 10.1053/j.gastro.2022.11.014

Live your healthiest life: Get tips from top experts weekly. Subscribe to the Michigan Health blog newsletter

Headlines from the frontlines: The power of scientific discovery harnessed and delivered to your inbox every week. Subscribe to the Michigan Health Lab blog newsletter

Like Podcasts? Add the Michigan Medicine News Break on iTunes or anywhere you listen to podcasts.


More Articles About: Lab Report Basic Science and Laboratory Research Cancer Research Colon Cancer All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories red spot in shoulder pulsing red with circle around it on black background and see-through to shoulder bone and joint
Health Lab
How do you treat rotator-cuff tears?
Rotator-cuff tears appear most in adults over the age of 40. These injuries are typically treated with physical therapy and surgical intervention as a last resort.
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
Using biolasers to improve cancer diagnostic tools
Lighting up cancer cells with biolasers. The technique overcomes the limitations of current cancer diagnostic tools. For more on this story and for others like it, visit the Health Lab website where you can subscribe to our Health Lab newsletters to receive the latest in health research and information to your inbox each week. Health Lab is a part of the Michigan Medicine Podcast Network, and is produced by the Michigan Medicine Department of Communication. You can subscribe to Health Lab on Apple Podcasts, Spotify, or wherever you listen to podcasts.
outline of a child and dna floating around purple shadowing some dark navy
Health Lab
Researchers tackle rare, aggressive tumors in children
ATRT are rare, aggressive tumors. A lot of research has been done in identifying their cause and there are good therapies available. However, more research needs to be done. This is a Q&A article to raise awareness about ATRT and highlight the current research.
paperwork with white and blue and red and says medicare john smith hospital part a medical part b 09-01 09-0
Health Lab
How did health insurance coverage changes affect older adults?
Two University of Michigan studies show how past policy decisions have affected older Americans with modest or low incomes.
News Release
Eight U-M researchers win PECASE awards
Three U-M medical researchers, and five others from the U-M faculty, have received one of the nation's top honors for scientists and engineers, as announced by the White House.
drawing of doctor with question mark about head with patient questioning and stressed over paperwork in exam room
Health Lab
People find medical test results hard to understand, increasing overall worry
In a published research letter in JAMA, researchers tested whether people could understand standard pathology reports and whether a patient-centered report might improve understanding.