How a single protein can slow down age-related hearing loss

Study suggests that the overexpression of cochlear neurotrophin-3 can help prevent the loss of hearing.

5:00 AM

Author | Jina Sawani

ear lab note
Jacob Dwyer, Justine Ross, Michigan Medicine

Age-related hearing loss is a prevalent disorder that holds the power to diminish the quality of life for those dealing with the condition. It's also a key contributor to things like social isolation, depression and dementia, however no therapies currently exist to prevent its progression.

Gabriel Corfas, Ph.D., who serves as the director of Michigan Medicine's Kresge Hearing Research Institute, says that one of the first events in "cochlear aging" that leads to hearing loss is the breakdown of synapses between inner hair cells, or IHCs, and spiral ganglion neurons, or SGNs.

"In many cases, this phenomenon called 'IHC synaptopathy' precedes neuronal and hair cell loss," said Corfas. "Ultimately, this means that the connections between these cells is lost, and important parts of auditory information are not sent to the brain."

This notion inspired Corfas and a team of hearing researchers to explore if age-related IHC synaptopathy can somehow be stopped, thus preventing age-related hearing loss. Their results were recently published in Aging Cell.

"We tested the effects of cochlear overexpression of neurotrophin-3, or Ntf3, in middle-aged mice," said Corfas. "We were able to demonstrate that we can stop the loss of these synapses by increasing the amount of this neurotrophic factor in middle-aged mice that were already experiencing mild, but significant, hearing loss."

The team achieved this by modifying the mouse genome, allowing them to regulate when and in which cells the Ntf3 gene was expressed.

"This technique is called 'inducible transgenesis,'" said Corfas. "Basically, we were able to make certain cells in the inner ears of the mice express higher levels of the Ntf3 neurotropic factor after administering a drug that activates the transgene."

Corfas adds that during the aging process, the levels of neurotrophin-3 within the inner ear decrease. However, the team of researchers was able to successfully bring the levels of Ntf3 within the aged mice to the same levels as the young mice. 

"Other studies in our laboratory showed that the number of IHC synapses correlate with the processing of auditory information and therefore influences the ability to hear in noisy environments," said Corfas. "The more synapses there are, the better the mice can hear. Our findings indicate that preventing age-related IHC synaptopathy should improve overall hearing as we age, as well as hearing in noisy environments."

Corfas says that he hopes this research will lay the foundation for not only delaying age-related hearing loss in humans, but also helping them hear better in (and after experiencing) loud places.

And the team's findings reveal even larger implications. 

"Our study suggests that factors associated with regulating synaptogenesis during development can possibly prevent age-related synaptopathy in the brain. This could someday be useful in preventing various disorders related to the central nervous system."

Live your healthiest life: Get tips from top experts weekly. Subscribe to the Michigan Health blog newsletter

Headlines from the frontlines: The power of scientific discovery harnessed and delivered to your inbox every week. Subscribe to the Michigan Health Lab blog newsletter

Like Podcasts? Add the Michigan Medicine News Break on Spotify, Apple Podcasts or anywhere you listen to podcasts.

Paper cited: "Cochlear Neurotrophin-3 overexpression at mid-life prevents age-related inner hair cell synaptopathy and slows age-related hearing loss," Aging Cell . DOI: 10.1111/acel.13708


More Articles About: Lab Notes Hearing Problems Future Think Basic Science and Laboratory Research Neurological Disorders Ear, Nose & Throat
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Minding Memory with a microphone and a shadow of a microphone on a blue background
Minding Memory
The Link Between Hearing Loss and Cognitive Decline
Hearing loss is one of the most common conditions of aging, affecting nearly two-thirds of older adults over the age of 70, but it’s not just a matter of diminished hearing. Hearing loss can contribute to poor psychosocial outcomes for patients including loneliness, depression, and social isolation. New research also shows that hearing loss is linked to a higher risk of cognitive decline and dementia. In fact, the 2024 Lancet Commission on Dementia Prevention, Intervention, and Care identified hearing loss as one of 14 modifiable risk factors for dementia. According to the commission, treating hearing loss could prevent up to 7% of dementia cases globally, making it one of the most impactful areas for potential prevention. This raises the question of whether use of hearing aids in people with hearing loss can reduce or mitigate this increased dementia risk. To help us understand these connections and the latest research in this area, we are joined today by Dr. Alison Huang, an epidemiologist and Senior Research Associate from the Johns Hopkins Cochlear Center for Hearing and Public Health. Her research studies the impact of sensory loss on cognitive and mental health in older adults. Dr. Huang was an author of the Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study, a large, multicenter randomized controlled trial that tested whether treating hearing loss in older adults could help slow cognitive decline published in the Lancet. Alison Huang, PhD, MPH Link to article: Lin FR, Pike JR, Albert MS, Arnold M, Burgard S, Chisolm T, Couper D, Deal JA, Goman AM, Glynn NW, Gmelin T, Gravens-Mueller L, Hayden KM, Huang AR, Knopman D, Mitchell CM, Mosley T, Pankow JS, Reed NS, Sanchez V, Schrack JA, Windham BG, Coresh J; ACHIEVE Collaborative Research Group. Hearing intervention versus health education control to reduce cognitive decline in older adults with hearing loss in the USA (ACHIEVE): a multicentre, randomised controlled trial. Lancet. 2023 Sep 2;402(10404):786-797. doi: 10.1016/S0140-6736(23)01406-X. Epub 2023 Jul 18. PMID: 37478886; PMCID: PMC10529382.
sketched out bacteria in a dish yellow and blue colors of U-M
Health Lab
More clues reveal how gut bacteria works
Research from the University of Michigan uncovers a unique way the bacteria Bacteroides, which make up nearly half of the gut microbiome, synthesize the proteins needed to degrade carbohydrates.
see through blue person with red lines running through neck to chest
Health Lab
What is phrenic neuropathy?
Phrenic neuropathy is a condition that impacts the nerve around the diaphragm making it harder to breathe, especially in situations such as lying down or being in water. The condition is treatable, with surgical intervention, physical therapy or by letting it heal over time.
young adult male hugging blonde haired dog
Health Lab
Cutting edge brain neurostimulator device significantly reduces 21-year-old’s seizures
A 21-year-old patient benefits from a novel application of responsive neurostimulation, also known asRNS, surgery to reduce seizures from drug-resistant epilepsy.
Microscope
Health Lab
Nerve damage reduced in prediabetic mice with diet, exercise
A low calorie diet and high intensity exercise can reduce nerve damage in prediabetic mice, according to a Michigan Medicine study.
On left, a young boy in a wheelchair has his doctor standing to his left and his parent is standing to his right in a show of support. On the right side of the image, the boy is now an adult and is wondering about the cost of his care and if his questions will be answered.
Health Lab
Changing the definition of cerebral palsy
Cerebral palsy is defined as a childhood disorder, which fails to recognize adults living with the condition and the lack of care they receive once they age out of pediatric clinics.