Normothermic perfusion system extends life of organs waiting for transplant

It increases the number of hearts considered for transplants

1:15 PM

Author | Valerie Goodwin

teal persons body looks like a puzzle red heart top right of shoulder and chest getting placed into missing piece spot
Getty Images

In the United States, about 30-40% of donor hearts aren't considered for transplant due to inadequate function in the donor. 

This creates a drop in the number of donated hearts that are available to be matched with someone who needs a heart transplant.

A team at University of Michigan Health led by Alvaro Rojas-Pena, M.D., a research investigator with the section of transplantation surgery at University of Michigan Health has spent the past eight years looking at better ways to transport organs for donation, specifically hearts, to improve the number of organs that can be used for transplants.

Rojas-Pena’s team found through using a modified normothermic perfusion system heart preservation is feasible for up to 24 hours. 

The system uses a blood-derived solution to perfuse the organs and has a hemofilter to remove toxins. 

This system allows for prolonged preservation of longer than 12 hours without creating edema or damage to the organs. 

The current standard for heart preservation between donation and transplant is up to six hours in cold static storage. 

While some hearts can still be transplanted after this six-hour mark, they have increased posttransplant morbimortality rates.

“We can maintain heart viability by perfusion at coronary flows and we are able to remove toxins and control edema to the tissue,” said Rojas-Pena.

“Most importantly, our system can be used to objectively assess function of the organ prior to transplant including the ability to perform echocardiograms, compared to assessment of function in the donor.”

This research and current data prove the concept that normothermic perfusion has the potential to increase the organ pool by considering previously discarded hearts, performing an objective assessment of heart function, increasing the donor/recipient distance and developing heart-specific perfusion therapies.

By extending the time of organ preservation, logistics will become less of an issue and organs with borderline or questionable function can objectively be assessed and potentially considered for transplant. 

This opens the option for “organ” therapy and conditioning prior to transplant.

Additional authors include Brianna L. Spencer, Spencer K. Wilhelm, Christopher Stephan, Kristopher A. Urrea, Daniela Pelaez Palacio and Robert H. Bartlett from the Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan Medical School. Daniel H. Drake from the Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan Medical School and the Department of Cardiac Surgery, University of Michigan Medical School.

This work was funded by the Maxine and Stuart Frankel Foundation, Fast Forward Medical Innovation, and current work by the NIH R01-HL161139-02

Michigan Research Core: ULAM Pathology Core (formerly IVAC)

Paper cited: “Extending heart preservation to 24 h with normothermic perfusion,” Frontiers in Cardiovascular Medicine. DOI: 10.3389/fcvm.2024.1325169

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation.

Sign up for the Health Lab Podcast: Add us on SpotifyApple Podcasts or wherever you get you listen to your favorite shows.


More Articles About: Basic Science and Laboratory Research Interventional cardiology Cardiac Surgery Heart Transplant Surgery Pre-Transplant Surgery Pre- and Post-Operative
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories older man with glasses standing at balcony with back to glass windows
Health Lab
Roy’s Michigan Answer: Second opinion saves patient’s heart
Michigan Medicine's team of cardiology experts offered an advanced, minimally invasive coronary intervention, which restored one patient back to good health
patient family and child life team member smiling and then a photo next to that one with the same worker helping someone in a wheelchair in a patient office
Health Lab
A pediatric program helping adults through cardiovascular disease, surgery
A child life program that has helped kids and their families reduce stress and anxiety associated with hospitalization and illness is now finding success with adult patients undergoing complex heart procedures as well.
sketched out bacteria in a dish yellow and blue colors of U-M
Health Lab
More clues reveal how gut bacteria works
Research from the University of Michigan uncovers a unique way the bacteria Bacteroides, which make up nearly half of the gut microbiome, synthesize the proteins needed to degrade carbohydrates.
man in hopsital with daughter mask on left and man hugging granddaughter hugging right
Health Lab
Liver transplant bonds 3 Michigan families
When Scott Bryers needed a liver transplant, he joined the waiting list for three years before finding his partial liver donor match. When that fell through, he quickly found a complete liver donor match. Today, the three families stay in touch.
see through blue person with red lines running through neck to chest
Health Lab
What is phrenic neuropathy?
Phrenic neuropathy is a condition that impacts the nerve around the diaphragm making it harder to breathe, especially in situations such as lying down or being in water. The condition is treatable, with surgical intervention, physical therapy or by letting it heal over time.
Microscope
Health Lab
Nerve damage reduced in prediabetic mice with diet, exercise
A low calorie diet and high intensity exercise can reduce nerve damage in prediabetic mice, according to a Michigan Medicine study.