A personalized RNA therapeutic treats twins with ultra-rare form of Batten disease

It'll be used to correct genes with specific mutations, like the CLN3 mutation responsible for the girls' disease

12:27 PM

Authors | Kelly Malcom | Paul Avedisian

little girls who are sisters sitting in outside area with pumpkins in pink and yellow shirt
Credit: ForeBatten Foundation

In a remarkable display of bench to bedside science, a therapeutic developed by Michigan Medicine's Michelle Hastings, Ph.D., is now being used to treat twin girls with a rare form of juvenile Batten disease.

Hastings, who is the Pfizer Upjohn Research Professor of Pharmacology, director of RNA Therapeutics at U-M's Center for RNA Biomedicine, has been working on the drug platform, called antisense oligonucleotides, for nearly twenty years.

Hastings explains it can be used to “fix” genes with specific mutations, like the CLN3 mutation responsible for the girls’ disease.

Batten, or CLN3, disease is an inherited, fatal pediatric neurodegenerative disorder with no treatment that directly addresses the cause of the disease.

After four to seven years of normal development, children with this condition develop vision impairment, intellectual disability, movement problems, speech difficulties and seizures, which worsen over time until premature death sometime between their teens and thirties.

Because of her expertise, Hastings, along with senior postdoctoral fellow Jessica Centa, Ph.D., were approached by the ForeBatten Foundation, a nonprofit organization created in 2017 by Karen and David Kahn shortly after their twin daughters Amelia and Makenzie were diagnosed with CLN3 Batten disease caused by a very rare CLN3 c.569dupG mutation. 

The U-M team conducted basic scientific research on the common mutation found in ~85% of CLN3 Batten disease and later, also on the mutation unique to the twins.

Antisense oligonucleotides , of the type used by Hastings for CLN3 Batten, are small pieces of synthetic RNA molecules that are essentially reverse copies of genetic material.

They bind to specific pieces of RNA in a cell much like one side of a piece of Velcro attaching to its mate, to modify how the gene is being expressed. 

These molecules can be injected and taken up by the cells in the body.

“We and other investigators have been targeting and designing antisense therapeutics to target both rare and common diseases for which there is a known genetic cause,” said Hastings.

Realizing the potential of antisense therapeutics, the Food and Drug Administration refined their regulations for so-called investigational new drugs, clearing the way for Hastings and the ForeBatten foundation to develop a highly targeted therapeutic for the twins.

“ASOs hold promise as therapeutics because, when carefully designed, they can be safe and also developed rapidly for targeted therapies for specific mutations,” said Hastings.

Hastings and the ForeBatten Foundation team received notification from the FDA in May 2024 that the clinical investigation for the ASO developed for the girls’ mutation — dubbed Zebronkysen after the girls’ beloved stuffed animals, Zebra and Monkey — may proceed.

Said Hastings, “This effort was realized through a cooperative effort of scientists, clinicians, and an experienced drug development team. We are enthusiastic about the potential for this antisense oligonucleotides  to help the girls and also about the trail we are blazing, which unlocks new possibilities for personalized RNA-based treatment solutions.”

Guided by the ForeBatten Scientific Advisory Board, the drug development team included members of the Hastings Lab at U-M and Rosalind Franklin University of Medicine and Science, The University of North Carolina School of Medicine Department of Neurology, Vanguard Clinical, BioDev Consulting, Keane Consulting, SciLucent, INRS Quebec, Sanford Research and others.

Hastings says the current findings give hope for an antisense oligonucleotides--based therapy for the more common Batten mutations in the near future.  

Her ultimate goal is to help investigators within the U-M Center for RNA Biomedicine, across campus and beyond, to develop potential therapeutic molecules that they can design from their own fundamental research to apply to new disease treatments.

“At the end of the day I’m a basic scientist and what we accomplished was bringing this technology to the clinic with the help of a collaborative team,” she said.

“I think it highlights that researchers and clinicians can be the drivers of a path forward for the rapid development and synthesis of frontline therapeutics.”

As for the young patients, they began therapy with Zebronkysen in June 2024, at the University of North Carolina Medical School.

The treatment is being overseen by UNC Associate Professor of Neurology Yael Shiloh-Malawsky, M.D.

Karen and David Kahn have done everything possible to ensure their girls have the best quality of life and happiness, including making an informed and rational decision to pursue this treatment.

They expressed, “We have confidence in the researchers and scientific advisors who have been with us since the diagnosis. While it is too soon to determine how Zebronkysen will affect the girls’ disease trajectory, we find great excitement and comfort in accomplishing what we set out to do seven years ago.” 


More Articles About: All Research Topics Future Think pharmacology
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

In This Story
Michelle Hastings headshot Michelle L Hastings

Professor

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories wheelchair walker image
Health Lab
Spread of drug resistant bacteria linked to patient hand contamination and antibiotic use within nursing homes
A Michigan Medicine research team seeks to identify characteristics of patients within nursing homes, as well as the nursing home environment itself, that are associated with contamination by vancomycin-resistant enterococci.
red spot in shoulder pulsing red with circle around it on black background and see-through to shoulder bone and joint
Health Lab
How do you treat rotator-cuff tears?
Rotator-cuff tears appear most in adults over the age of 40. These injuries are typically treated with physical therapy and surgical intervention as a last resort.
outline of a child and dna floating around purple shadowing some dark navy
Health Lab
Researchers tackle rare, aggressive tumors in children
ATRT are rare, aggressive tumors. A lot of research has been done in identifying their cause and there are good therapies available. However, more research needs to be done. This is a Q&A article to raise awareness about ATRT and highlight the current research.
paperwork with white and blue and red and says medicare john smith hospital part a medical part b 09-01 09-0
Health Lab
How did health insurance coverage changes affect older adults?
Two University of Michigan studies show how past policy decisions have affected older Americans with modest or low incomes.
News Release
Eight U-M researchers win PECASE awards
Three U-M medical researchers, and five others from the U-M faculty, have received one of the nation's top honors for scientists and engineers, as announced by the White House.
drawing of doctor with question mark about head with patient questioning and stressed over paperwork in exam room
Health Lab
People find medical test results hard to understand, increasing overall worry
In a published research letter in JAMA, researchers tested whether people could understand standard pathology reports and whether a patient-centered report might improve understanding.