A promising new target for antibiotics

High-resolution images reveal workings of a bacterial RNA riboswitch

9:54 AM

Authors | Suzanne Tainter | Bec Roldan

dna strand colorful
Getty Images

To prevent a global health crisis, scientists around the world are searching for ways to fight bacteria that can evade the current arsenal of antibiotics.

A promising target for new and improved antibiotics are riboswitches, small stretches of RNA that regulate a process necessary for the production of proteins by the bacterial cell.

Riboswitches are found almost exclusively in bacteria and could be targeted with antibiotics so that animals or humans are unaffected. With a full understanding of how riboswitches work, researchers may be able to develop drugs that disrupt the cellular machinery that creates needed proteins.

Now, researchers at the University of Michigan's Department of Chemistry and the Life Sciences Institute have revealed, using a combination of biochemistry, structural biology and computational modeling, how a particular riboswitch regulates its own synthesis.

The first step in generating a protein from the genetic code is called transcription. The enzyme RNA polymerase, or RNAP, travels along the DNA, copying the genetic information found in DNA into a strand of RNA.

During this process, RNAP will undergo several "pauses" as it waits for further instructions from the cell. Mechanisms for this pausing and restart have long remained elusive to scientists but promise to become a perfect target for antibiotics.

The team, led by chemistry professor Nils Walter through a collaboration with the labs of LSI professor Melanie Ohi and former U-M scientist Aaron Frank, used a structural biology technique called single particle cryo-electron microscopy, or cryo-EM, to visualize for the first time how this transcriptional regulation occurs. Their results are published in Nature Structural & Molecular Biology.

The Walter lab looked at a particular riboswitch that binds a molecule made by the cell, called preQ1. When the preQ1 molecule binds to the riboswitch it alters the shape of the RNA, which then allows the RNAP to once again continue along the DNA so that transcription continues.

Riboswitches were first discovered in 2002, but their specific roles related to the transcription machinery are not well understood. And it's not hard to see why that is, says Adrien Chauvier, a Walter lab scientist and expert on riboswitches.

"This is a David vs. Goliath situation," he said. "RNAP is this giant Goliath and the riboswitch is David. Because of this drastic size difference, visualizing where and how preQ1 regulates transcriptional pausing is equal to finding a needle in a haystack."

Earlier research from the Walter lab revealed that transcriptional pausing is switched on and off as a function of the preQ1 molecule binding to the riboswitch. Moving forward, the Walter lab teamed up with cryo-EM expert Ohi to visualize what was happening.

"This work is a great example of the strength of doing science at the University of Michigan. Three labs with different expertise were able to form a multidisciplinary collaboration that led to an important and novel discovery," said Ohi, also a professor of cell and developmental biology at the U-M Medical School.

"These findings wouldn't have been possible without this synergy, along with the investments the university has put into strengthening cryo-EM and RNA biology at U-M in recent years."

Single particle cryo-EM can determine the structures of large protein complexes by building 3D models from millions of 2D images of particles frozen in different orientations, revealing structures that contain molecular details that provide functional insights.

The structural information from single particle cryo-EM corroborated the Walter lab's earlier findings, but also revealed a specific change in the shape of the riboswitch never seen before. When the preQ1 molecule binds, the riboswitch twists to communicate to the RNAP to continue transcription.

These observations were further rationalized and validated through a collaborative effort with Frank, then a professor of biophysics and chemistry at the University of Michigan and an expert in computational modeling of RNAs. With detailed 3D models in hand, the U-M collaborative team now has a more precise understanding for how this riboswitch regulates transcriptional pausing.

"Now we understand the whole process of riboswitch regulation and can use that knowledge to specifically target these critical parts of bacterial life, hopefully averting the coming crisis of multidrug-resistant bacteria," Walter said.

In addition to Walter and Chauvier, U-M researchers include Jason Porta, Indrajit Deb, Emily Ellinger and Katarina Mezei. This work was supported by the National Institutes of Health grants to Walter and Ohi, LSI and by the U-M Cryo-EM Biosciences Initiative.

Paper cited: “Structural Basis for Control of Bacterial RNA Polymerase Pausing by a Riboswitch and its Ligand,” Nature Structural & Molecular Biology. DOI: 10.1038/s41594-023-01002-x


More Articles About: All Research Topics Basic Science future bacteria pharmacology Pharmacy infectious disease Hospital Acquired Infections Community Health
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories kid screaming with fire coming out of mouth with smoke all around in grey and teddy bear panicked and parents legs on floor as if passed out or blown away
Health Lab
Does your child manage anger well?
One in seven parents think their child gets angrier than peers of the same age and four in 10 say their child has experienced negative consequences when angry, a national poll suggests. 
baby laying down with stethoscope over chest doctors hands
Health Lab
Comparing life threatening illness risk between two surgeries for infants with congenital heart disease
Newly presented data suggest that infants who receive a hybrid stage I palliation – a less invasive alternative for initial treatment – more commonly develop necrotizing enterocolitis compared to those who receive the standard Norwood operation, a complex open heart surgery.
purple gloves close up holding piece
Health Lab
Recycled pacemakers function as well as new devices, international study suggests
Recycled pacemakers can function as well as new devices, a University of Michigan-led study suggests. These used and reconditioned devices have the potential to increase access to pacemaker therapy in low- and middle-income countries, where many patients cannot afford the treatment.
pigs sick and chickens in background with blue background and green cells floating around
Health Lab
Why the bird flu’s jump to pigs is concerning
A Michigan Medicine virologist speaks about the implications of H5N1 influenza, or bird flu, and whether a new pandemic could be on the horizon.
family of four sitting on couch in living room looking at an ipad laughing
Health Lab
Grandparents help grandkids in many ways – but the reverse may be true too
A poll shows the many ways (childcare, nutrition, major expenses) that grandparents help their grandchildren, but also suggests a link to older adults’ sense of isolation and their mental health.
cell formation in grey and then two circles highlighed blue and one red
Health Lab
The solution to death from a fentanyl overdose could lie in its chemical structure
University of Michigan researchers may have found that the solution to prevent people from dying from a fentanyl overdose may be found within fentanyl's own chemistry.