Research finds potential target for cardiovascular disease in diabetes

Targeting NETs could reduce the risk of heart attack and stroke for diabetic patients

2:00 PM

Author | Valerie Goodwin

red lines with heart through it beige background
Getty Images

Over 10% of the population in the United States has been diagnosed with diabetes according to the Centers for Disease Control and Prevention.

Around 7.5% of these diabetic patients will experience cardiovascular events like heart attack or stroke in their lives.

Research from rheumatologists, cardiovascular pharmacologists and nephrologists at the University of Michigan has found a potential target when it comes to preventing vascular dysfunction, the first step toward frank cardiovascular events such as heart attack or stroke, in patients with diabetes.

In a study published in Science Advances, University of Michigan researchers found that the overproduction of neutrophil extracellular traps is an important contributing factor to vascular dysfunction in diabetes.

Neutrophils are white blood cells that help the body fight against infections and are responsible for the production of NETs.

NETs are intended to act as first responders against various bacterial and viral infections, but they may also become overactive in chronic autoimmune or inflammatory diseases such as lupus or diabetes.

When this happens, NETs can create problems for blood vessels.

“An excess of NETs is a common contributing factor to inflammation in patients with autoimmune rheumatologic diseases. This is a major area of research in our laboratory directed by Jason Knight, M.D., Ph.D.,” said Chao Liu, Ph.D., the first author and a research fellow in the Division of Rheumatology, Department of Internal Medicine.

The rheumatology team at the University of Michigan collaborated with Kevin Atkins, Ph.D., and Subramanium Pennathur, M.D., in the division of nephrology to extend the research of NETs to diabetes.

“We noticed that others were finding a role for NETs in certain diabetic complications like retinal damage and problems with wound healing,” said Liu.

“We wondered if this connection might also extend to vascular dysfunction, which is a topic we were well-positioned to explore based on our prior work.”

In laboratory research, the team found that diabetic mice had an excess of NETs as expected.

The mice also had blood vessel walls that did not relax normally making them more susceptible to forming the lipid plaques that lead to heart attack or stroke.

When the excess NETs were eliminated, the diabetic mice had much healthier appearing vessels that were essentially indistinguishable from healthy non-diabetic mice.

In patients with diabetes, factors like high glucose and oxidative stress appear to activate neutrophils to form excessive NETs.

“By treating the excess of NETs in diabetic patients, we think it is possible that we would be able to reduce vascular dysfunction and the complications that follow it,” said Liu.

“Finding a solution for vascular dysfunction could greatly improve the lives of diabetic patients.”

Going forward, the team is hoping to study the role of neutrophils and NETs in all phases of diabetic vascular diseases, from vascular dysfunction to frank atherosclerosis with a goal of finding personalized and proactive treatments for patients with diabetes and likely beyond.

Additional authors include Chao Liu, Srilakshmi Yalavarthi, Ajay Tambralli, Christine E. Rysenga, Nikoo Alizadeh, Lucas Hudgins, Wenying Liang, Somanathapura K. NaveenKumar, Jason S. Knight from the Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA. Lixia Zeng and Kevin B. Atkins from the Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA. Hui Shi from the Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA and the Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Miriam A. Shelef from the Division of Rheumatology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA as well as the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA. Subramaniam Pennathur from the Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA as well as the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.

Funding for this research was provided by the Department of Defense grant: W81XWH-20-1-0663 (JSK) and NIH grant: P30 DK89503 (SP).

Paper cited: “Inhibition of neutrophil extracellular trap formation alleviates vascular dysfunction in type 1 diabetic mice,” Science Advances. DOI: 10.1126/sciadv.adj101


More Articles About: Basic Science and Laboratory Research Stroke Treatment Stroke Prevention Heart Attack Prevention Cardiovascular: Diseases & Conditions Diabetes Metabolism, Endocrinology & Diabetes Diabetes Management Heart and Vascular Function Testing Rheumatology
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories pink little pig bank listening to money with a stethoscope on a black table
Health Lab
National Diabetes Prevention Program saves costs for enrollees
The National Diabetes Prevention Program was created by the Centers for Disease Control and Prevention in 2010 to offer an effective way to help prevent type 2 diabetes. U-M researchers evaluated the uptake and outcomes of the National DPP and found that enrollees saved in medical costs and had a reduced risk of developing type 2 diabetes.
woman on left smiling and house on right painted white with greenery
Health Lab
Preserving an artist’s vision after diabetic retinal disease
Kim Hartman is an artist with Type 1 diabetes. She started developing vision problems and doctors at Michigan Medicine helped her slow the vision loss and manage it.
prescription pad drawn
Health Lab
Reducing dose of popular blood thinners may limit risk of future bleeding
For people taking the popular blood thinners rivaroxaban (brand name Xarelto) and apixaban (brand name Eliquis), after having a blood clot, a reduced dose may limit the future risk of bleeding as well as hospital visits, a Michigan Medicine-led study suggests.
older man with glasses standing at balcony with back to glass windows
Health Lab
Roy’s Michigan Answer: Second opinion saves patient’s heart
Michigan Medicine's team of cardiology experts offered an advanced, minimally invasive coronary intervention, which restored one patient back to good health
sketched out bacteria in a dish yellow and blue colors of U-M
Health Lab
More clues reveal how gut bacteria works
Research from the University of Michigan uncovers a unique way the bacteria Bacteroides, which make up nearly half of the gut microbiome, synthesize the proteins needed to degrade carbohydrates.
see through blue person with red lines running through neck to chest
Health Lab
What is phrenic neuropathy?
Phrenic neuropathy is a condition that impacts the nerve around the diaphragm making it harder to breathe, especially in situations such as lying down or being in water. The condition is treatable, with surgical intervention, physical therapy or by letting it heal over time.