Research sheds new light on gene therapy for blood disorders

A study shows new steps toward more patients getting gene therapy

5:00 AM

Author | Tessa Roy

dna strand
Jacob Dwyer, Justine Ross, Michigan Medicine

Research from experts at Michigan Medicine, the Children’s Hospital of Philadelphia and Penn Medicine is breaking ground on new ways of treating blood disorders, such as sickle cell anemia, through gene therapy

To cure blood disorders, patients must undergo high dose chemotherapy and bone marrow transplantation. This requires a match between the recipient and donor immune system, but ~30% of patients do not have a match. Even when they do the donor immune system can attack the patient, graft versus host disease.

Gene therapy corrects the mutation in a patient’s own cells but still requires chemotherapy and transplantation of one’s own corrected cells. The new research shows that blood stem cells can be genetically engineered while still in the bone marrow, in a single treatment.  

Co-first author Michael Triebwasser, M.D., Ph.D., clinical instructor in Pediatric Hematology and Oncology reported, “This is the first time the blood stem cells that create the blood and immune system over our lifetime can be genetically engineered while still in the bone marrow.

“This technology can be used to correct disease cause mutations such as the single mutation that causes sickle cell anemia in ~7.5 million people worldwide, and it can be used to control stem cells using messenger RNA (mRNA). To do this we utilized a type of nanoparticle similar to the Pfizer COVID mRNA vaccine but designed it to find these stem cells specifically.”  

The risks patients undergo for gene therapy highlights the need for improved treatments. In addition, eliminating the need for stem cell collection and treatment outside the body can cut costs for patients and improve access to critical gene therapies for many patients.

The recently approved gene therapy for another blood disorder, beta-thalassemia, costs $2.8 million dollars. 

"This approach is highly flexible and has reduced toxicity when treating stem cells outside the blood compared to current methods. It will hopefully lead to improved methods for correcting stem cells.

“The ultimate goal would be to do these same gene corrections while the stem cells remain in the body. This would open the door for cures in resource limited countries where the infrastructure for bone marrow transplantation is not present, and the cost is prohibitive.” 

This research was supported by the National Institutes of Health (NIH grants 5T32HL007150 and 5T32HL007622), The Thomas B. and Jeannette E. Laws McCabe Fund at the University of Pennsylvania. 

Paper cited: In vivo hematopoietic stem cell modification by mRNA delivery,” Science. DOI: 10.1126/science.ade6967


More Articles About: Blood Disorders (Hematology) Sickle Cell Anemia Bone and Marrow Transplant (BMT) Cancer and Genetics Gene Therapy
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories A family discussing their family's medical history at Thanksgiving
Health Lab
Why you need to discuss your family health history at Thanksgiving
The holidays are a great time to discuss your family's medical history. Learn the importance of discussing your family's health history and how to bring it up.
graphic drawing of woman falling and everything is pink and falling and floating with her like dna strands, cars, people, medicine, ID, blood vessels and cells
Health Lab
Why are more young people being diagnosed with cancer?
An article discusses causes of early-onset cancer and ways to reduce your risk.
jill martin close up blonde hair pink background and pink shirt
Health Lab
Jill Martin’s breast cancer journey
TODAY show contributor Jill Martin talks about breast cancer treatment and why she’s advocating for early detection and genetic screening.
Sewing Machine Cell Fabric Tangled
Health Lab
Research points to potential new treatment for aggressive prostate cancer subtype
In two separate papers, U-M researchers describe how a gene alteration drives prostate cancer and a potential degrader that stops it
girl on left with tan hat beanie and black shirt and green writing and on right with mom smiling same outfit and matching shirts
Health Lab
Teen with bone marrow transplant shares cancer journey online
A teenager shares her rare lymphoma diagnosis and bone marrow transplant story online.
blue cells close up with orangey see through circle going in and an explosion of bright yellow orange to the far left in that circle with purple circles floating in background
Health Lab
Researchers identify factor that drives prostate cancer-causing genes
Researchers have uncovered a key reason why a typically normal protein goes awry and fuels cancer. They found the protein NSD2 alters the function of the androgen receptor, an important regulator of normal prostate development.