What's the impact of predictive AI in the health care setting?

Findings underscore the need to track individuals affected by machine learning predictions

5:00 AM

Author | Karin Eskenazi

red hair woman looking at screen of computer in white coat
Getty Images

Models built on machine learning in health care can be victims of their own success, according to researchers at the Icahn School of Medicine and the University of Michigan.

The study assessed the impact of implementing predictive models on the subsequent performance of those and other models.

Their findings—that using the models to adjust how care is delivered can alter the baseline assumptions that the models were “trained” on, often for worse—were detailed in Annals of Internal Medicine.

“We wanted to explore what happens when a machine learning model is deployed in a hospital and allowed to influence physician decisions for the overall benefit of patients,” said first and corresponding author Akhil Vaid, M.D., clinical instructor of Data-Driven and Digital Medicine, part of the Department of Medicine at Icahn Mount Sinai. 

For example, we sought to understand the broader consequences when a patient is spared from adverse outcomes like kidney damage or mortality. AI models possess the capacity to learn and establish correlations between incoming patient data and corresponding outcomes, but use of these models, by definition, can alter these relationships. Problems arise when these altered relationships are captured back into medical records.”

The study simulated critical care scenarios at two major health care institutions, the Mount Sinai Health System in New York and Beth Israel Deaconess Medical Center in Boston, analyzing 130,000 critical care admissions. The researchers investigated three key scenarios:

1. Model retraining after initial use

Current practice suggests retraining models to address performance degradation over time.

Retraining can improve performance initially by adapting to changing conditions, but the Mount Sinai study shows it can paradoxically lead to further degradation by disrupting the learned relationships between presentation and outcome.

2. Creating a new model after one has already been in use

Following a model’s predictions can save patients from adverse outcomes such as sepsis.

However, death may follow sepsis, and the model effectively works to prevent both. Any new models developed in the future for prediction of death will now also be subject to upset relationships as before. 

Since we don't know the exact relationships between all possible outcomes, any data from patients with machine-learning influenced care may be inappropriate to use in training further models.

3. Concurrent use of two predictive models

If two models make simultaneous predictions, using one set of predictions renders the other obsolete. Therefore, predictions should be based on freshly gathered data, which can be costly or impractical.

“Our findings reinforce the complexities and challenges of maintaining predictive model performance in active clinical use,” says co-senior author Karandeep Singh, M.D., associate professor of Learning Health Sciences, Internal Medicine, Urology, and Information at the University of Michigan.

“Model performance can fall dramatically if patient populations change in their makeup. However, agreed-upon corrective measures may fall apart completely if we do not pay attention to what the models are doing—or more properly, what they are learning from.”  

“We should not view predictive models as unreliable,” said co-senior author Girish Nadkarni, M.D., M.P.H., Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, director of The Charles Bronfman Institute of Personalized Medicine and system chief of Data-Driven and Digital Medicine.

“Instead, it's about recognizing that these tools require regular maintenance, understanding, and contextualization. Neglecting their performance and impact monitoring can undermine their effectiveness. We must use predictive models thoughtfully, just like any other medical tool. Learning health systems must pay heed to the fact that indiscriminate use of, and updates to, such models will cause false alarms, unnecessary testing, and increased costs.”

“We recommend that health systems promptly implement a system to track individuals impacted by machine learning predictions, and that the relevant governmental agencies issue guidelines,” said Vaid.

“These findings are equally applicable outside of health care settings and extend to predictive models in general. As such, we live in a model-eat-model world where any naively deployed model can disrupt the function of current and future models, and eventually render itself useless.”

The remaining authors are Ashwin Sawant, M.D.; Mayte Suarez-Farinas, Ph.D.; Juhee Lee, M.D.; Sanjeev Kaul, MD; Patricia Kovatch, BS; Robert Freeman, RN; Joy Jiang, BS; Pushkala Jayaraman, MS; Zahi Fayad, PhD; Edgar Argulian, MD; Stamatios Lerakis, M.D.; Alexander W Charney, M.D., Ph.D.; Fei Wang, Ph.D.; Matthew Levin, M.D., Ph.D.; Benjamin Glicksberg, Ph.D.; Jagat Narula, M.D., Ph.D.; and Ira Hofer, M.D.

Paper cited: “Implications of the Use of Artificial Intelligence Predictive Models in Health Care Settings: A Simulation Study.” Annals of Internal Medicine. DOI: 10.7326/M23-0949


More Articles About: All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories red spot in shoulder pulsing red with circle around it on black background and see-through to shoulder bone and joint
Health Lab
How do you treat rotator-cuff tears?
Rotator-cuff tears appear most in adults over the age of 40. These injuries are typically treated with physical therapy and surgical intervention as a last resort.
outline of a child and dna floating around purple shadowing some dark navy
Health Lab
Researchers tackle rare, aggressive tumors in children
ATRT are rare, aggressive tumors. A lot of research has been done in identifying their cause and there are good therapies available. However, more research needs to be done. This is a Q&A article to raise awareness about ATRT and highlight the current research.
paperwork with white and blue and red and says medicare john smith hospital part a medical part b 09-01 09-0
Health Lab
How did health insurance coverage changes affect older adults?
Two University of Michigan studies show how past policy decisions have affected older Americans with modest or low incomes.
News Release
Eight U-M researchers win PECASE awards
Three U-M medical researchers, and five others from the U-M faculty, have received one of the nation's top honors for scientists and engineers, as announced by the White House.
drawing of doctor with question mark about head with patient questioning and stressed over paperwork in exam room
Health Lab
People find medical test results hard to understand, increasing overall worry
In a published research letter in JAMA, researchers tested whether people could understand standard pathology reports and whether a patient-centered report might improve understanding.
glasses on newspaper text
Health Lab
12 stories from 2024 worth a second look
Health Lab writers selected 12 stories for you to read from 2024 that are worth revisiting before kicking off a brand-new year.